Refinement of the $\mathbf{S b}_{2} \mathbf{T e}_{3}$ and $\mathbf{S b}_{2} \mathbf{T e}_{2} \mathbf{S e}$ Structures and Their Relationship to Nonstoichiometric $\mathbf{S b}_{2} \mathbf{T e}_{3-y} \mathbf{S e}_{y}$ Compounds

By Thomas L. Anderson and H. Brigitte Krause
Department of Physics, Northern Illinois University, Dekalb, Illinois 60115, U.S.A.

(Received 20 May 1973; accepted 27 July 1973)

Abstract

$\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ crystallize in the $\mathrm{Bi}_{2} \mathrm{Se}_{2} \mathrm{~S}$ structure. The space group is $R \overline{3} \mathrm{~m}$. The lattice constants for the hexagonal cell at $29^{\circ} \mathrm{C}$ are: $a=4 \cdot 264 \pm 0 \cdot 001$ and $c=30 \cdot 458 \pm 0 \cdot 007 \AA$ for $\mathrm{Sb}_{2} \mathrm{Te}_{3}$, and $a=4 \cdot 188$ ± 0.001 and $c=29.937 \pm 0.006 \AA$ for $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$. The fractional atom parameters were determined by a one-dimensional Fourier summation and by successive least-squares refinement of the $00 l$ reflections, after intensity correction for Lorentz and polarization factors. The parameters for $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ are: $u_{\mathrm{Sb}}=$ ± 0.3988, and $u_{\text {Tel }}= \pm 0.7869$; those for $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ are: $u_{\mathrm{Sb}}= \pm 0.3942$ and $u_{\text {Te } 1}=0.7854$. The Te^{2} or the Se respectively are in $0,0,0$. The interatomic distances in $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ are: $\mathrm{Sb}-\mathrm{Te}=2 \cdot 979, \mathrm{Te}^{1}-\mathrm{Te}^{1}=$ 3.736 and $\mathrm{Sb}-\mathrm{Te}^{2}=3.168 \AA$. The corresponding distances for $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ are: $\mathrm{Sb}-\mathrm{Te}^{1}=2.975, \mathrm{Te}^{1}-\mathrm{Te}^{1}=$ 3.753 and $\mathrm{Sb}-\mathrm{Se}=3.028 \AA$. C lattice constant measurements on the $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ series show two regions with almost linear changes represented by the equations $c=-0 \cdot 529 y+30 \cdot 465$ for $y \leq 1$ and $c=-0.407 y$ +30.341 for $1 \leq y \leqq 2$ (y stands for fractional formula unit of selenium). The discontinuity for the composition $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}_{1}$ suggests that the Se is first substituted into the $0,0,0$ positions; after the Te^{2} position is filled it goes into the Te^{1} position.

Introduction

Considerable interest has been shown in the relation between electronic properties and chemical bonding in the $\mathrm{Sb}_{x} \mathrm{Bi}_{2-x} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ system (Teramoto \& Takayanagi, 1960). This interest, in part, is caused by the strong anisotropy in the electrical properties which may vary by as much as a factor of 50 within and perpendicular to the layers of the layer structure (Drabble \& Wolfe, 1956; Drabble, Groves \& Wolfe, 1958). $\mathrm{Bi}_{2} \mathrm{Se}_{3}, \mathrm{Bi}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and, within a wide range of composition, solid solutions of these compounds are believed to be isomorphous with $\mathrm{Bi}_{2} \mathrm{Te}_{2} \mathrm{~S}$ crystallizing in the tetradymite structure with a rhombohedral cell of the space group $R \overline{3} m$ (Harker, 1939). The corresponding larger hexagonal cell, shown in Fig. 1 , consists of 15 layers. For the stoichiometric com-
pounds each layer contains only one kind of atom. The sequence of layers in $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ is expected to be $\mathrm{Te}^{2}-\mathrm{Sb}-\mathrm{Te}^{1}-\mathrm{Te}^{1}-\mathrm{Sb}$ followed by two identical sequences. The superscripts 1 and 2 denote differently bonded tellurium atoms in the positions $0,0, \pm u$ and $0,0,0$ respectively.

No unequivocal single-crystal X-ray data on $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ have been available in the past. However, based on the assumption of isomorphism between $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Bi}_{2} \mathrm{Te}_{3}$, Sb and Te^{1} atom pararameters for $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ have been calculated from selected area electron-diffraction data (Semiletov, 1956). Ullner (1968) concluded that $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ crystallizes with the same structure, except that the Te^{2} atoms are replaced by Se. However, his data are inconclusive because of incorrect parameters (based on a uniform distance between layers) for his intensity calculations and an unsatisfactory experi-

Table 1. Lattice constants of $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$

Compound	Lattice constant (A)	X-ray data						Electron diffraction data Semiletov (1956)
		Dönges (1951)	$\begin{aligned} & \text { Ullner } \\ & \text { (1968) } \end{aligned}$	Teramoto \& Takayanaki* (1960)	Swanson et al. (1964)	Present paper \dagger	Present paper \ddagger	
$\mathrm{Sb}_{2} \mathrm{Te}_{3}$	¢	$4 \cdot 25 \AA$	$2 \cdot 37$	$4 \cdot 262$ A	$4 \cdot 262$ Å	4.264		$4.25 \AA$
			$\pm 0.008 \AA$			$\pm 0.001 \AA$		
	c	30.35	$30 \cdot 39$	30.45	$30 \cdot 45$	30.458	$30 \cdot 455$	29.92
			± 0.06			± 0.007	± 0.008 Å	
SbTe 2 Se	a		$4 \cdot 180$	$4 \cdot 190$		$4 \cdot 188$		
			± 0.008			± 0.001		
	c		29.78	29.950		29.937	29.930	
			± 0.06			± 0.006	± 0.008	
		*The lattice constants have been deduced from Fig. 5(a) and 5(b). \dagger Single-crystal diffractometer data at $29^{\circ} \mathrm{C}$. \ddagger Powder diffractometer data at $25^{\circ} \mathrm{C}$.						

mental setup. A proper change of parameters affects the intensities more strongly than replacement of the tellurium by selenium in either the Te^{1} or the Te^{2} position. The substitution of Se into the Te^{1} position, however, has been proved for $\mathrm{Bi}_{2} \mathrm{Te}_{2} \mathrm{Se}$ (Bland \& Basinski, 1961). In conjunction with the selenium substitution into only one of the tellurium positions, deviations of the lattice constants from Vegard's law have been observed (Wiese \& Muldawer, 1960). They occur for fractional formula units of selenium larger than $1 \cdot 2$. Considering the smallness of the effect, the exact onset of the nonlinearity is hard to determine and it may well be at $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$.
No deviations from Vegard's law have been reported for $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ (Taramoto \& Takayanagi, 1960). Their observation of a linear lattice constant change for $0 \leq y \leq 2$ and of a phase separation of $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ for compositions with $y>2$ suggests that the Se may be substituted only into the Te^{1} position. Procarione \& Wood (1970) suspected this also on account of their optical data while phase-diagram and electronic measurements point to the reverse substitution mechanism (Ullner, 1968).
To resolve the contradiction which results from the existing data, we remeasured the lattice constants for the $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ series and refined the $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ structure.

Experimental

Single crystals of $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ were grown from the melt by a modified Bridgman technique (Procarione \& Wood, 1970; Wood, Van Pelt \& Hyland, 1972). The preparation of sufficiently small crystals for transmission techniques was unsatisfactory because of the resulting crystal deformation. Only cleavage perpendicular to [$00 l$] did not affect the crystal quality. Since the parameters of the atom positions can be determined solely from the intensities of the $00 l$ reflections, we used 'infinitely' thick cleaved samples in conjunction with a Norelco powder diffractometer for intensity gathering. Thus no absorption corrections had to be made. Small crystals, however, served for the determination of systematic absences by photographic techniques and for lattice-constant determination with a Siemens single-crystal diffractometer. In all cases $\mathrm{Cu} K \alpha$ radiation was used. The powder diffractometer was equipped with a graphite monochromator. All intensities were corrected for Lorentz and polarization factors. The c lattice constants for the $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ series were obtained by step scanning of the $0,0,33$ reflection, and the a and c lattice constants for $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}_{1}$ by extrapolation from measurements of numerous reflections with the single-crystal diffractometer (Argonne Natl. Lab. Program B-106).

Results

The lattice constants for $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ are listed in Table 1. The c lattice constants for other com-
positions of $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ are shown in Fig. 2. If one assumes two regions in which the lattice constants change linearly with composition, one obtains, by a least-square fit, the following equations: $c=-0.529 y+$ 30.465 for $0 \leq y \leq 1$ and $c=-0.407 y+30.341$ for $1 \leq y \leqslant 2$. The discontinuity at the composition $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ supports the assumption that the Se is first

Fig. 1. The crystal structure of $\mathrm{Sb}_{2} \mathrm{Te}_{3}$.
substituted into the $0,0,0$ position. Laue photographs of the $\mathrm{Sb}_{2} \mathrm{Te}_{3-\downarrow} \mathrm{Se}_{y}$ series show continuous changes of relative intensities but no obvious deviation from the hexagonal symmetry. Contrary to previous observations (Ullner, 1968), we detected no systematic line broadening for compounds with $y \leq 1$ but an increasing amount of line broadening with increasing y for $y>1 \cdot 2$. It was observed that the difficulty in cleaving samples also follwed a similar pattern.

For $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ we observed systematic absences only for reflections with $-h+k+l \neq 3 n$ and thus established that they crystallize in the space group $R \overline{3} m$. If one assumes three formula units per

Fig. 2. c lattice constants of $\mathrm{Sb}_{2} \mathrm{Te}_{3-y} \mathrm{Se}_{y}$ as a function of y.

Fig. 3. Fourier synthesis of the $00 /$ reflections. Because of the centers of symmetry of $z=0$ and $z=\frac{1}{6}$, only one sixth of the unit cell had to be drawn. Although the electron density for each compound is drawn on an absolute scale, the scales for the two compounds vary slightly.
hexagonal unit cell, one obtains an X-ray density of $6.505 \mathrm{~g} \mathrm{~cm}^{-3}$ as compared with the reported density of $6 \cdot 50$ (Handbook of Chemistry and Physics, 1967-68) and our measured value of $6 \cdot 48$. The X-ray density and our measured density of $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$ are 6.327 and $6 \cdot 30$, respectively.

The approximate atom parameters for Te^{1} as well as for Sb in the special positions $\pm 0,0, u$ were determined by a one-dimensional Fourier summation after correction of the intensities for Lorentz and polarization factors. The contribution of the 000 reflection was calculated from the number of electrons in each unit cell. The results are shown in Fig. 3. From the change of the electron density around zero and from the change of the bond length to the adjacent Sb peak between $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$, it can be concluded that the Se is substituted into the $0,0,0$ position. By using a least-squares refinement program for this configuration (Argonne Natl. Lab. Program 36E7118), we obtained weighted R values of 0.036 and 0.011 for $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}_{1}$, respectively. A comparison between observed and calculated intensities is given in Table 2. The resulting fractional parameters, isotropic temperature factors, bond lengths and bond distances are listed in Table 3.

Table 2. Observed and calculated intensities $\left(\times 10^{-2}\right)$

	$\mathrm{Sb}_{2} \mathrm{Te}_{3}$		$\mathrm{Sb}_{2} \mathrm{Te}_{2} \mathrm{Se}$	
	Observed	Calculated	Observed	Calculated
003	$10 \cdot 41$	$7 \cdot 38$	5.90	2.77
006	$48 \cdot 42$	$39 \cdot 17$	63.03	64.17
009	$60 \cdot 36$	$61 \cdot 14$	21.06	$20 \cdot 83$
0,0,12	13.86	$8 \cdot 47$	79.89	$70 \cdot 62$
0,0,15	404.04	$406 \cdot 77$	$207 \cdot 87$	$207 \cdot 70$
0,0,18	$206 \cdot 66$	$205 \cdot 20$	296.31	$296 \cdot 41$
0,0,21	119.70	$118 \cdot 12$	61.60	$60 \cdot 60$
0,0,24	26.60	18.04	$0 \cdot 08$	$0 \cdot 02$
0,0,27	14.47	19.82	$0 \cdot 56$	0.04
0,0,30	23.29	13.50	1.91	2.73
0,0,33	157.41	158.67	$135 \cdot 14$	$135 \cdot 42$
0,0,36	12.00	$11 \cdot 10$	$7 \cdot 48$	$4 \cdot 69$

We could not achieve any satisfactory refinement for the other two possible configurations: the statistical distribution of Se in both the Te^{1} and Te^{2} layers and the substitution of the Se into the Te^{1} layers only, respectively. If both were allowed to vary, the positional and temperature parameters became completely unrealistic. By fixing the temperature factors to the values in Table 3 (which may be too low for the cases in question) we obtained less unrealistic positional parameters, but R values of 0.485 and 0.898 respectively.

As one can see from the tables, the incorporation of the smaller selenium atoms into the $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ structure has been achieved by shrinkage of both the a and c lattice constants. In spite of this 1.7 or 1.8% change in a and c, the bond length $\mathrm{Sb}-\mathrm{Te}^{1}$ has remained approximately

Table 3. Parameters, temperature factors, bond lengths and bond angles

unchanged and the bond length $\mathrm{Te}^{1}-\mathrm{Te}^{1}$ has even increased by about $\frac{1}{2} \%$. This has been achieved by a larger separation of the $\mathrm{Sb}-\mathrm{Te}^{1}$ layers and the $\mathrm{Te}^{1}-\mathrm{Te}^{1}$ layers. Only the distance between the Sb -Se layers has decreased (by 9.4%) as compared with the $\mathrm{Sb}-\mathrm{Te}^{2}$ layer distance. The deviation from a regular octahedral surrounding of the selenium atoms by antimony has become smaller than for the corresponding atoms in the $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ structure.

The authors wish to thank Dr Melvin Mueller for his computer programs, Dr Charles Wood for use of his crystal growth equipment and suggestions concerning crystal growth and Dr Ira Odom for use of his powder diffractometer.

References

Bland, J. A. \& Basinski, S. J. (1961). Canad. J. Phys. 39, 1040-1043.

Brown, A. \& Lewis, B. (1962). J. Phys. Chem. Solids, 23, 1597-1604.
Dönges, E. (1951). Z. anurg. allgem. Chem. 265, 56.
Drabble, J. R. \& Goodman, C. H. L. (1958). J. Phys. Chem. Solids, 5, 142.
Drabble, J. R., Groves, R. D. \& Wolfe, R. (1958). Proc. Phys. Soc. 71, 430.
Drabble, J. R. \& Wolfe, R. (1956). Proc. Phys. Soc. 69b, 1101.

Harker, D. (1934). Z. Kristallogr. 89, 175.
Procarione, W. \& Wood, C. (1970). Phys. Stat. Sol. 42, 871-878.
Semiletov, S. A. (1956). Sov. Phys. Crystallogr. 1, 317-319.
Swanson, H. E., Cook, M. M., Evans, E. H. \& Ulmer, L. (1964). NBS Monograph 25, Sec. 3, p. 8.

Teramoto, I. \& Takayanagi, S. (1961). J. Phys. Chem. Solids, 19, 124-129.
Ullner, H. A. (1968). Ann. Phys. 21, 45-56.
Wiese, J. R. \& Muldawer, L. (1960). J. Phys. Chem. Solids, 15, 13-16.
Wood, C., Van Pelt, B. \& Hyland, E. (1972). Rev. Sci. Instrum. 43, 1374-1375.

